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An explicit representation of an analytical solution to the problem of decay of a plane 
shock wave of arbitrary strength is proposed. The solution satisfies the basic 
equations exactly. The approximation lies in the (approximate) satisfaction of two 
of the Rankine-Hugoniot conditions. The error incurred is shown to be very small 
even for strong shocks. This solution analyses the interaction of a shock of arbitrary 
strength with a centred simple wave overtaking it, and describes a complete history 
of decay with a remarkable accuracy even for strong shocks. For a weak shock, the 
limiting law of motion obtained from the solution is shown to be in complete 
agreement with the Friedrichs theory. The propagation law of the non-uniform shock 
wave is determined, and the equations for shock and particle paths in the (2, t)-plane 
are obtained. The analytic solution presented here is uniformly valid for the entire 
flow field behind the decaying shock wave. 

1. Introduction 
In the theory of one-dimensional unsteady gas motion there is an interesting but 

very complicated problem related to the decay of a plane shock wave when it 
interacts with a simple wave. An explicit solution of this problem involving a non- 
isentropic flow with an unknown moving boundary, a shock wave of arbitrary 
strength, has been judged so far as not feasible. The simplest case of a motion 
involving such an interaction arises when a piston moving with uniform velocity into 
a gas at  rest suddenly stops and sends out a rarefaction wave to interact with the 
shock wave which races ahead of it. The details of the flow field resulting from this 
interaction in the (2, t)-plane are shown in figure 1. A piston moving along P O  sends 
in front of it a uniform shock front (its path represented by the straight path PE)  with 
constant states ahead of and behind it. The piston is suddenly stopped at 0, leading 
to the emission of rarefaction waves, which overtake the shock from behind and 
render it non-uniform. When the uniform shock front PE is overtaken from behind 
by the leading expansion front OE of a forward-facing centred simple wave, its 
trajectory ceases to be a straight line. It is represented by the curved path EF in the 
figure. The front OE on impinging upon the shock sends a signal propagating back 
into the flow region along a receding Mach line. Thus, the flow field behind the shock 
front PEF can be divided into four regions. The region R, has a uniform flow. The 
region R, is spanned by an expansion fan of a centred simple wave. The region R,, 
which results from the interaction of two simple waves, is described by the general 
solution of the isentropic equations of motion and is called the general wave region. 



154 V .  D .  Sharma, R. Ram and P. L. Sachdev 

I Y = Y,. 

FIQURE 1. Interaction of a shock wave PEF with a centred simple expansion wave OE. 

In region R,, the gas motion is non-isentropic and is headed by a non-uniform shock 
advancing into a region at  rest. Non-uniformity of the shock causes entropy 
variations, which are carried along the particle paths into the region behind the 
shock wave. These entropy variations make an analytic approach quite difficult. 
However, a considerable simplification results if the shock is weak so that the 
changes of entropy across it are negligible, i.e. if the flow behind the decaying shock 
can be assumed to be isentropic. In this case, the Riemann invariant is constant 
through the shock, and the (isentropic) simple wave solution satisfies the Rankine- 
Hugoniot (RH) conditions at  the shock front to third order in shock strength. With 
this approximation, Friedrichs’ (1948) theory provides a solution to this problem. 
Other methods by which the rise of entropy across the shock can be accounted for 
approximately have been given by Pillow (1949) and Lighthill (1950). Meyer (1960) 
and Meyer & Ho (1963) refer to an analytical approach, which can be used for 
describing approximately the early stages of decay of a shock of arbitrary strength. 
However, an analytical description of the complete history of decay of a shock of 
arbitrary strength does not seem to have appeared in the literature. Ardavan-Rhad 
(1970), by setting a limit on the strength of the shock, obtained an analytic solution 
which satisfies, at the shock of moderate strength, the kinematic boundary 
conditions exactly but the RH conditions approximately. However, the arbitrary 
function it@), which occurs in his solution, shows divergent behaviour as it is 
determined in the two separate ways : it is an increasing function of A if it is obtained 
from the integration of his (3.3), and a decreasing function of n if its form is obtained 
directly from the solution (see (3.4) of Ardavan-Rhad and our table 1). This 
discrepancy becomes strong as the shock strength increases. Ardavan-Rhad’s 
solution would, therefore, become incompatible with the RH conditions in the high- 
Mach-number regime. This is borne out by his comments about the growth of the 
error in his approximate theory as the shock Mach number increases. 

We present here an analytical solution to this shock-rarefaction interaction 
problem, which is not limited by the strength of the shock. The basic assumption in 
the form of our solution is that the particle velocity is a linear function of the spatial 
coordinate. A class of such flows has been considered by Pert (1980) (see the 
references to considerable previous work with linear velocity profiles in this paper). 
Pert refers to these particular flows as self-similar. This is a rather specialized 
definition of self-similarity , but numerical study of the given set of partial differential 
equations shows that a class of initial profiles do indeed approach the present ‘self- 
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similarity ’ form aa time becomes large. The flows manifesting such behaviour include 
both expansion and compression of gas masses. Pert has shown that linear 
dependence of velocity on the spatial coordinate is equivalent to the condition that 
all state variables are separable functions of time and the Lagrangian variable. We, 
however, were led to the present solution by an earlier study of Steketee (1979), who 
considered ‘ homogeneous ’ solutions of non-homentropic flows in the Lagrangian 
mass coordinate and time. While our special solution satisfies the governing PDE’s 
exactly, two of the RH conditions are met approximately; the kinematic shock 
condition and the sound speed at the shock are employed exactly in the treatment. 
However, numerical results show that the error of approximation in the other RH 
conditions is small even for strong shocks of pressure ratio as high as ten. The 
limiting law of motion of weak shocks is shown to be in full agreement with the 
Friedrichs theory. 

The scheme of this paper is as follows. Section 2 contains the motivation for the 
non-isentropic solution and its subsequent derivation. The solution pertaining to 
region R4 of non-isentropic flow is given in $3. Section 4 deals with the isentropic 
regions denominated as R,, R, and R,. The conclusions of this study are set forth in 
§5* 

2. Derivation of a solution of the non-isentropic equations of motion 

in the absence of transport effects are 
The Eulerian equations governing the unsteady one-dimensional motion of a fluid 

where t denotes the time, x the position, p the density, u the particle velocity, p the 
pressure, and 7 the entropy per unit mass. The subscripts denote partial 
differentiation unless stated otherwise. When written in terms of the sound speed 
c = (yp/p)i, with y as the ratio of specific heats c p  and cv, the system ( 1 )  assumes the 
alternative form 

Ct+UCz+f(y-l)cux = 0, (2 a )  

In order to describe some simple non-homentropic flows, we consider ‘homo- 
geneous’ solutions in the Lagrangian mass coordinate h and time t .  The system ( l ) ,  
when expressed in Lagrangian mass coordinate h and t ,  takes the form (Stanyukovich 
1960) 

= 0,  (3 a)  

V , - U ,  = 0 ,  (3b) 

where V = l / p  is the specific volume and b(h) represents the entropy distribution. 
Equation (3a) represents the conservation of mass, (3b) the conservation of 
momentum and (3c) results from the conservation of energy and the equation of 

6 FLM 186 
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state for a perfect gas. Following a classical procedure of self-similar solutions, we 

(4) 
write 

where z = t/h is a similarity variable and r ,  q and w are real constants. 
Inserting (4) into (3) ,  one finds that solutions of this kind are possible provided V ,  

p and u are homogeneous functions of the same degree, say n,  in h and t ,  so that 
r = q = w = n. Equations (3 )  then reduce to 

v = h'V*(z) , p = h@p*(z) , u = hWu*(z), 

say, where a new constant b, is introduced, and a prime denotes differentiation with 
respect to z .  It may be noted that the case n = 0 corresponds to a homentropic flow ; 
for a non-homentropic flow, n is not zero. 

An inspection of (5a) and (5b) leads to the following form of the solution: 

,v* = v,zm, u* = uo zm-1, p ,  = p ,  zm-2,  ( 6 )  

where V,, u,, p,, m and b, are real constants given by 

V, = $ ( n y + y + n - l ) u , ,  (7 c )  

2-Yug+'(y- 1) (ny+  y + n -  l ) Y  
ny + 27 + n 

b, = (7 4 

Thus, from (3c )  and (5c ) ,  one can deduce that 

~=c , ( ln (b , )+n(y+ l ) ln (h) } .  (8) 
Inspection of (3 )  shows that if u is a solution, then u+const. is also a solution. This 
invariance property of the velocity u allows a constant to be added to its form 
obtained above. Thus, one obtains the following class of 'homogeneous ' solutions for 
the system ( 3 )  : 

v = v, hn-mtm,  = h(n-m+Z)trn-Z = h"-m+l m 1 
9 0 t - +urn,  (9a ,b ,c )  

where the constant u, may be regarded as the terminal velocity of all fluid elements. 
Several interesting properties of such homogeneous solutions in Lagrangian 
coordinates h and t have been discussed by Steketee (1979). 

In order to obtain the corresponding solution in the (x,t)-plane one may use the 
transformation (Stanyukovich 1960) 

Xh = v, xt = u ,  

which, on substitution of V and u from (9 )  and use of (7 ) ,  leads to 

x = p$"-m+lt"+u, t 

Elimination of h from (9c)  and (10) yields the following velocity distribution in the 
(z, t)-plane : 

( 1 1 )  
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This (spatially) linear form of velocity distribution motivates us to seek a solution 
of the system (1) or (2) such that 

u = s@(t)+A(t). (12) 
When (12) is substituted in (2a),  one obtains a linear partial differential equation in 
c, a general solution of which can be found to be 

c = $(Y- l )  If( Wli. (13) 

where p = exp - @(t)dt , ( I  1 
and f( Y) is an arbitrary function of 

!P= p s - p ( t ) p ( t ) d t .  

It may be noted that Y remains constant along a particle path, dx/dt = u, and 
changes its value from one particle path to another. One may, therefore, regard Y as 
a Lagrangian coordinate. It may be noted that the entropy is also constant along a 
particle path, and is therefore a function of Y. 

Substituting u and c from (12) and (13) into the momentum equation (2b), one 
finds, on using (15), that the former is satisfied provided the following conditions 
hold : 

&(t)  + @S(t) = B,pY+'(t). 

A(t)+A(t) @(t) = -Bl,d(t)SA(t)p(t)dt, (16b)  

f (Wq'( 'y)  = Cpf'(W+Bl(Y--1)CpY, (W 
where a prime and a dot denote derivatives with respect to Y and t, respectively. 

Differentiating (16b) with respect to t and using (14) and (16a), we obtain 

A(t) + (y+ 1) A(t) @(t) + [24(t) + ( y  + 1) @S(t)]A(t) = 0. 

This equation, in two unknown functions, has a solution appropriate to the present 
problem, namely 

(17) 
2 

A(t)  = a(t-t*)-'+/3; @ ( t )  = (y+l)(t-t*) '  

where a, $ and t* are arbitrary constants. 
Equations (16a, b) then yield 

Now, it follows from (13), (15) and (Ma)  that 

[f( Wl', (19) c = (t - t*)- 

s( t  -t*)-' = Y(t - t*)m-l - +( y + 1) (t - t*)-l+/3( 1 - m)-l, (20) 
and so (12) can be written as 

Equations (19)-(21) express the variables c, u and 2 in terms of the Lagrangian 
particle coordinate Y and time t. We may choose t* = 0 without loss of generality. 

6-2 
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We now identify the velocity distribution (21) with that of the special exact solution 
(9) of the non-homentropic case so that 

B 
U, =- 

1-m' 
Y = t ( y +  1) uohn-m+l .  

This identification refers to the case for which the velocity distribution (21), 
together with (22b), corresponds to a class of homogeneous flows described by (9); in 
view of (8) and (22b), the entropy distribution for such flows in the (x, t)-plane has 
the form 

where N = n/ [ (2 -m)  (n-m+l)], qo = c, ln[bo(m/uo)2n'~m+mn-ma~], and !P(x,t) is the 
same as in (20). We look for a particular solution in the (x,t)-plane, which may 
describe the decay behaviour of a plane shock due to interaction with a rarefaction 
wave, and for which the velocity and entropy distribution are given by (21) and (23). 
The motivation for the linear choice (12) leading to (21) and (23) has been given in 
8 1. The integration of the remaining compatibility condition (16c) yields 

with B, as a constant of integration. 
Eliminating 7 from (23) and (24) we obtain the form of the function f( Y) as 

f(!F) = h2Y2+Bg Y 2 N ,  (25) 

where B, = B,exp(~j,/c,) and A = [(l-rn)(2-m)(n-m+l)/(n-m+2)]4. We may 
note that a homentropic flow corresponds to the case n = 0 (i.e. h = 1 -m, N = 0). 
For a non-homentropic flow, n 0; the constant N, for all admissible values of n, is 
found to be less than one. 

In  order to determine B,, we match the homentropic flow in the region 0 < Y < Y, 
with the non-homentropic flow in Y > Y,, across the boundary (streamline) 
Y = Y, = exp [(q,-qo)/(2Ncp)], where ql and qo are, respectively, the values of 
entropy behind and ahead of the uniform shock PE. Thus, for !P < Y,, (16c) admits 
a solution of the form 

f ( ' ~ )  = (Y2+t$(l-m)2, 

with can  arbitrary constant, while for Y > Y,, the solution is given by (23) and (25). 
The requirements of continuity of the speed of sound c and entropy 71 across Y = Y, 
demand the continuity off( Y) across Y = Y, ; we thus have 

B, = [ (1-N) t fY;2-N][h!f$-N)]2  exp( -3). 
CP 

This, when substituted into (25), yields 

where 

f(Y) = h 2 Y " l + ( 1 - N ) ( 6 * - 6 )  (x)""-"] - , 

" 
6, = &!Pi,, 

N 6=- 
l -N'  
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Thus, a solution of the system ( 2 )  can be represented in the following form 

wherek= 1-m,andf(!P)isgiven by(26).From(28),  wehaveu= [ 2 2 / ( ( y + l ) t ) ] + p  
and Y = xt-2(Y+1)-ptk-1, where /3 is an arbitrary constant. 

3. The non-isentropic flow in region R, 

boundary the RH conditions 
In this section we attempt a solution in region R,, which satisfies on the shock 

3 = n - (2y+yn+n)-f,  
CO G)" 

1, n) (2y+ yn-n)Y 
(2y+yn+n)Y 

V s - q 0  = c, In[('+ 

and the kinematic condition 

(S) = u ,  
8 

( 2 9 4  

where U is the speed of shock propagation and n = (ps /p0) -  1 is its (pressure) 
strength. The subscripts s and 0 denote respectively the values just behind and ahead 
of the shock. 

In the limit n+O, (28c )  must reduce to the Riemann invariant, u-2c(y- l)-l = 
const. This requires that H = 1 when n = 0. Thus, in the limit of a sonic discontinuity 
propagating into a region at rest (uo = 0, U/co = 1, n = 0, H = l), (28c) yields 
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On evaluation of (28c) on the shock, we obtain H as a function of n: 

( y  - 1) ( 2 y ) - h  + (2y + yn + n)' 
[(n+ 1) (2y+yn-n)]4 

HAT) = 

Next we need to determine Yon the shock. To do this we differentiate (28a, b) on the 
shock front with respect to n and insert them in the kinematic condition (29e) to 
obtain a relation of the form 

(g) = 2F(n),  f d n s  

where we have used (28e) and where 

u l ag  dH, 
( H , [ - l ) - -  ---5- 2 

c.)[dn dn 
@s u 2 

F(n)  = 

(2y+yn+n)(2yn-2n++y-l)-(y+l)(n+1)(2y+yn-n) 
an 25 (27 + yn + n)2 

dn ( y - 1 )  (2y)-tn+(2y+yn+n)i (2y+yn-n) (n+l) 
- --I. 1 (34) 

5 = cs/co, H ,  and U/co  are (known) functions of n (see (29c, d )  and (30)).  
Also, (26), when evaluated on the shock, yields 

On comparing (31) and (35), we obtain the following form of Y on the shock 
front ; 

9 (36a) 

where P = FH;l(dH,/dn)-l, Fl = F(n,) and n, is the initial strength of the decaying 
shock. 

Equation (36a) gives U/co as a function of Ys/Y*: 

U _ -  

2 ( 1 - N )  

where A = (8-Fl) (5) - 8 .  

Further, on eliminating f( !Pj from (28a, e ) ,  we obtain the following relation in the 
region behind the decaying shock: 
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where 7 = t / t ,  is a dimensionless time variable and r = co t$/ Y* is a dimensionless 
parameter. t ,  is the time instant when the incident simple wave first strikes the 
uniform shock of strength IT,. 

Now in order that the solution describing the non-isentropic flow behind a 
decaying shock may satisfy the boundary conditions (29a-d)  and (29e) ,  we require 
that the two expressions for Y/!P* given by (36) and (37) match at the shock 
boundary. We thus arrive at the shock propagation law 

where Cl = C(n,), H ,  = H,(n,). In deriving (38), we have used the relation 

k r=- 
Cl HI * 

(39)  

This relation follows from (37), if we put Y, = Y, and t, = t ,  at the point of initial 
decay. 

The interaction problem being discussed here arises from a certain piston motion. 
The piston starting with a uniform velocity up gives rise to a shock with constant 
speed U,, and then stops. The initial shock strength n, is therefore uniquely 
determined from the piston Mach number M ,  = u,/co: 

IT, = b ( y +  l)Mi+[{*(y+ l ,M32+y2M;]% 

Here, co is the sound speed in the undisturbed gas. The other parameters of the 

~ N c , ] ,  can therefore be expressed in terms of the piston Mach number M,. 

(26) and (28e) ,  and substituting Y, = Y,, t, = t ,  in the resulting equation, we get 

problem, namely Cl = c,(n,)/co, H ,  = HAn,), 71 = 7F3(q) and Y* = exp [(7,-70)/ 

The values of constants N and 6 are determined as follows. Eliminating f($) from 

1-H:  
a*=-. 

H: 

Evaluation of (28 d) on the shock provides an expression for Y,/ !P* which combined 
with (36) yields the following equation for 6: 

where 71, = ~ , ( m , ) ,  F2 = F(lr,) and v1 = ~ ~ ( n , ) .  Here, IT, and n, are the initial and final 
strengths of the decaying shock under investigation, and 7, is given by (29b) .  It may 
be noted that the final strength n, may be taken to be any real positive number as 
small as we please. 

Equations ( 2 8 a )  and (28b) ,  when evaluated on the shock, yield the shock path 

where X, and 7, are the dimensionless coordinates of the shock, 

XS t, x,=-, 7 , = - .  
co t* t * 



162 V .  D. Sharma, R. Ram and P. L. Sachdev 

o t  I I I I I 

1 10 20 30 40 501 I 1 I I 
1000 2000 3000 4OOO 5000 6 

7 

w) 

FIGURE 2. Variation of pressure shock strength n with time T for shocks decaying from the initial 
strength n, with y = 1.4. The decay behaviour for small (solid lines) and large (dashed lines) time 
limits is shown separately. 

It now follows that the equation of the particle path, Ys = Y* separating regions 
R, and R,, is 

(43) x = - 72/(~+1) - - 1 27 
r ( Y - 1 ) '  

where X = x/(cot*) and 7 = t / t , .  

satisfying the boundary conditions (29c, d )  and (29e) can be written as 
In view of the foregoing results, the solution in the non-isentropic region R,, 

where Y/Y* = I '7-2'(Y+1) [X + 27/(y - l)], and the values of k, r, S,, 6 and N are as in 
(28), (39), (40), (41) and (27), respectively; on the shock, Y/Y* and 7 as functions of 
n are given by (35) and (36), respectively. 

Figures 2-6 illustrate certain features of the decay of shocks of different initial 
strengths n, for y = %. The variation of pressure at the decaying shocks which start 
with the initial strengths n, = 3,2  and I ,  respectively, is computed from (38), and the 
results are shown in figure 2. The value of 6, and hence of N, is computed from (41) 
using the Newton-Raphson iterative method. It is evident from table 1 that the two 
forms of H, the first designated H' and given by (30), and the second designated 
H'I and given by (28e) with YJY* the same as in (36), remain close to one another. 
The results are probably accurate to better than 1 YO. This is in contrast to the results 
obtained by Ardavan-Rhad (1970), who had a 5% error for shocks with initial 
strength n, = 3, and much more for stronger shocks, as is evident from table I .  
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(4 1.1 
1 .o 

(b) I 1.9 

l.'I\ 1.6 

lS  t\ 
u/co, n, = 1 --- 

Cleo, n, = 2 
1.2 C/Cm n, = --_ 
1.1 k- C/C0. n, = ' 

7 

FIQURE 3. Variation of (a) particle velocity u/co, (b) shock speed U / c o  and sound speed c/co, and (c) 
entropy at  the shock with time for shocks decaying from the initial strength n, with y = 1.4. The 
decay behaviour for small (solid lines) and large (dashed lines) time limits is shown separately. 
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FIQURE 4(u-d). For caption see facing page. 

Indeed, the growing error in the approximation of the arbitrary function ‘h’ of his 
solution would render the flow quantities incompatible with the RH conditions on 
the shock. 

The computation of flow quantities from the solutions (36b) and (44) is carried out 
for a shock decaying from the initial strength nl. The results are plotted in figure 
3 (a-c), which depicts the decay of flow quantities for small and large times. The most 
significant behaviour of the flow variables occurs for r - 1, when the expansion front 
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3.8 - 

I 

0 0.5 1.0 1.5 2.0 2.5 3.0 
n 

FIQURE 4. Agreement of the solution (solid lines) of the non-isentropic region with the RH 
conditions (dashed lines) for a shock decaying from the initial strengths (a) n, = 1, (b )  n, = 2, (c) 
n, = 3. y = 1.4. Physically conserved quantities from the solution (solid lines) and from the RH 
conditions (dashed lines) for a shock decaying from the initial strength (d) n, = 1, (e) n1 = 2, (f) 
T, = 3. y = 1.4. 

FIGURE 5. Distribution of sound speed, entropy and particle velocity in the non-isentropic flow 
region R, behind a shock decaying from the initial strength n, = 3 at a given time 7 = 
0.1964123 x 10'. 
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X 

4 

FIGURE 6. Non-uniform shock (-) decaying from the initial strength n, and the corresponding 
particle path (----) separating the non-isentropic region R, from the general wave region R,. 
E refers to the point on the uniform shock where the leading rarefaction wave strikes the shock. 
Here, y = 1.4. 

strikes the shock. For a shock decaying from the initial strength m, the analytical 
expressions of the flow variables for T - 1 can easily be obtained from the solution 

where 

s = T - ~ ,  D, =G1($) , D2=H;'(--&) dH , D 3 = ( N + H : ) ( D , + D 2 ) - D l .  
n-nl n-n, 

The constants (5,, H, ,  7, and N have been defined earlier. This approximate form of 
the solution, for T - 1, agrees closely with the corresponding solution depicted in 
figure 3 (a-c). 

The shock speed, particle velocity and sound speed are computed from (36b), (44a) 
and ( 4 4 b )  for m, = 3 , 2 ,  1 and the results are shown in figure 4(a-c). These computed 
values from the solution (solid lines) are compared with the corresponding values 
from the RH conditions (dashed lines). The shock speed and the sound speed 
computed from the solution are virtually indistinguishable from those computed 
from the kinematic condition and the RH condition, even though they have different 
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n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

H' 
1 
0.9959 
0.9843 
0.9698 
0.9546 
0.9396 
0.9251 
0.91 14 
0.8985 
0.8804 
0.8749 

H" 
1 
0.9999 
0.9883 
0.9738 
0.9572 
0.9401 
0.9237 
0.9086 
0.8960 
0.8841 
0.8749 

Value of k(n) in 
Ardavan-Rhad, 

which corresponds 
to the present 

value HI1 

1 
1 .OO28 
1 .OO96 
1.0168 
1.0233 
1.0290 

% Error in the 
present 

approximation 

0 
0.4 
0.4 
0.4 
0.3 
0.1 
0.1 
0.3 
0.2 
0.2 
0.0 

YO Error in the 
approximation of 

Ardavan-Rhad 

0 
0.7 
3.0 
5.0 
7.0 
9.0 

TABLE 1. Comparison of the present approximation with that of Ardavan-Rhad (1970) 

analytical forms. However, the particle velocity and the entropy show a small 
discrepancy. For further comparison, we examined the validity of the conservation 
laws of mass, momentum and energy at the shock front. Let m,, m2 and mz be the 
dimensionless mass, momentum and energy fluxes, respectively, at the rear of shock 
front; we then have 

1 u  u m - _  _-_ 
3 -  2 ( co co y+&(:y* 

m,, mz and m3 were computed from the analytic solution at  the shock front as well 
as from the RH conditions for n, = 1, 2, 3. The results are plotted in figure 4(d-f ), 
where solid lines (dashed lines) correspond to the results obtained from the solution 
(RH conditions). The comparison shows that the momentum and energy fluxes are 
in very good agreement but the mass flux suffers a small discrepancy. The present 
solution may, therefore, be interpreted as one for which the shock front exhibits a 
sink-like property with regard to the physically conserved quantity m, - the mass 
flux. The distribution of particle velocity, sound speed and entropy, a t  a given time, in 
region R, behind the decaying shock starting with initial strength n1 = 3 is computed 
from (44) and the results are shown in figure 5. The shock and particle trajectories 
for shocks decaying from initial strengths n1 = 3 , 2  and 1 are computed from (42) and 
(43), and are shown in figure 6. 

In the limit of a very weak shock (n 4 l),  (31), on expanding the numerator and 
denominator of F in powers of A, yields 
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which, on integration and use of (28aI and RH conditions, yields the limiting law of 
propagation for a weak shock, n - t 3 ;  this is in full agreement with the Friedrichs 
theory for weak shocks, 

4. The isentropic flow in regions R,, R, and R, 
Having determined a specific solution of the non-isentropic flow in region R,, 

which describes the decay of a shock of arbitrary strength, we seek the corresponding 
solution for flows in regions R,, R, and R,. The flow in region R, behind a uniform 
shock is a constant state. The flow properties of this region can be fully described by 
the RH conditions on the shock boundary. 

The region R, is a simple wave so that 

where K, is a constant given by 

and 
u+c .  On integrating this relation, we obtain 

is a parameter which denominates different positive characteristics, dx/dt = 

where g(E) is an arbitrary function of 5. 
The analytic solution for the isentropic region R, can be written as 

Equation (47) implies that g(5) = 0 in (46), so that the region R, is a centred simple 
wave. Thus, the isentropic flow in R, is described by 

u 2 X y - l K ,  -=- -+-- 
I 

co y + l 7  y + l  c o y  (49) 

The flow in region R, results from the interaction of two simple waves, one 
oncoming incident wave and the other receding reflected wave. The flow in this 
region is designated a ‘general wave’. It is bounded by the particle path Y = Y, 
given by (43), and a characteristic front dx/dt = u - c emanating from the point E (see 
figure 1). In  view of (48) and (49), this characteristic boundary is 
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y-l+2H;' 

(Y+l)T . 
A ,  = where 

The analytic solution of the isentropic flow equations in region R, can now be 
expressed in the form 

where 

U 7 - k  Y - = 2(y+l)4---2(y-1)4,  
CO l- y* 

on t,hr boundary (-43). 

on the boundary (50), 

in region R, . 
- = A ,  rVk - (H;'- 1) rk 

(XT-~'(Y+~) + 2(y - 1)-lrk) y* " 
It can be easily verified that the solution of the flow in region R, matches with those 
in regions R, and R, on the boundaries (43) and (50), respectively. 

5. Conclusions 
We have found a special solution of one-dimensional gasdynamic equations which 

describes the interaction of a centred simple wave with a shock of arbitrary strength. 
The solution satisfies the basic PDE's, the kinematic shock condition and another 
shock condition exactly. It satisfies the two other RH conditions (29a,b) 
approximately. The error incurred is shown to be small even for strong shocks. The 
special form of the solution has linear dependence of particle velocity on the spatial 
coordinate (see (12)); here the additional term A(t ) ,  a function of time, is important 
for the present problem. This class of solutions has been referred to as self-similar (in 
a special sense) by Pert (1980), who considered several physical examples and showed 
that these self-similar forms are attained in the limit of large time. The solution we 
have considered bears out the importance of this special class of solutions. 

This work was carried out under the DST (India) Project No. DST (India)/AM/ 
PLS/ 129. 
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